

CBVD 72.5-170 kV V-type centre-break disconnector

We know how

Our range of V-type centre-break disconnectors is designed to ensure the best performances and reliability, which are the result of our 70-year old experience.

Over 100,000 disconnectors installed in more than 100 countries worldwide are the guarantee of best-buys.

The CBVD V-type centre-break disconnector

The CBVD disconnector is derived from the "traditional" centre-break type (CBD) and keeps the main construction features and operating principle of our CBD.

In particular, materials and manufacturing process (according to ISO 9001 certified procedures) are the same, which guarantees, also for the CBVD, an exceptional reliability over many years of service, even under the harshest environmental conditions.

The CBVD is a very compact and economic solution, virtually adaptable to any possible substation layout; the baseframe, "space saving" and robust, allows the installation of the three poles on a single horizontal member, supported by one or two vertical columns

The three poles are usually operated simultaneously, either manually or electrically, by a single operating mechanism.

Integrated earthing blades are available for mounting on each or both sides of the pole, with the same short-time current withstand capability.

Like all our models, the CBVD complies with the latest international standards (IEC, ANSI), but can also be customised according to customers' particular specifications.

Optional devices

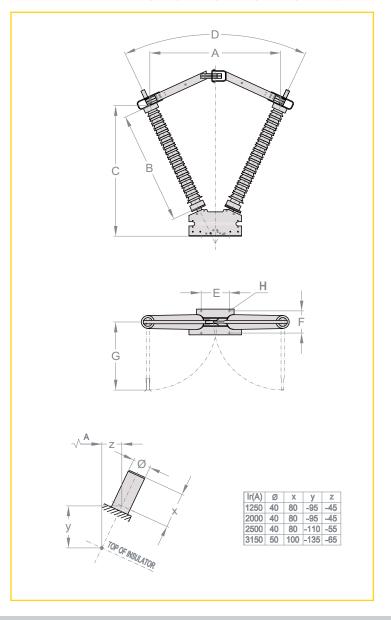
Upon request, the disconnector can be equipped with a bus-transfer current switching device compliant with IEC 62271-102 (Annex B).

The integrated earthing switch can also be fitted with optional induced current switching devices compliant with IEC 62271-102 (Annex C).

For operation under severe ice conditions (up to 20 mm), ice shields are available for protection of the equipment (where needed).

Ratings and dimensions

The values in the table refer to IEC standards only.


Rated voltage		U _r (kV)	72.5	123	145	170
Rated power-frequency withstand voltage	TE	U _d (kV)	140	230	275	325
	AID	U _d (kV)	160	265	315	375
Rated lightning impulse withstand voltage	TE	$\mathbf{U}_{p}(kV_{p})$	325	550	650	750
	AID	U _n (kV _n)	375	630	750	860

TE: To earth

AID: Across the Isolating Distance

Rated continuous current	I _r (A)	up to 3150 (depending on rated voltage)
Rated short-time withstand current	I _k (kA)	up to 40 / 3s (depending on rated current)
Rated peak withstand current	I _p (kA _p)	up to 108 (depending on rated current)

Dimensions	Α	mm	1014	1394	1634	1804
	В	mm	770	1220	1500	1700
	С	mm	1010	1415	1670	1850
	D	deg	50°	50°	50°	50°
	E	mm	300	300	300	300
	F	mm	240	240	240	240
	G	mm	645	860	990	1085
	Н	mm	4 Ø18	4 Ø18	4 Ø18	4 Ø18

